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Abstract

The validation of satellite ocean color data products is a critical component in establishing their measurement uncertainties, assessing their
scientific utility, and identifying conditions for which their reliability is suspect. Such efforts require a considerable amount of high quality in situ
data, preferably consistently processed and spanning the satellite mission lifetime. This paper outlines the NASA Ocean Biology Processing
Group's (OBPG) method for validating satellite data products using in situ measurements as ground truth. Currently, the OBPG uses the described
method for validating several historical and operational ocean color missions. By way of a case study, results for the Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS) are shown. These results indicate that for the majority of the global ocean, SeaWiFS data approach the target uncertainties
of ±5% for clear water radiances as defined prior to launch. Our results add confidence in the use of these data for global climate studies, where a
consistent, high quality data set covering a multi-year time span is essential.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Estimating the rates and magnitudes of ocean primary
productivity on regional and global scales is key to understand-
ing the role of the ocean in the Earth's carbon cycles
(Behrenfeld & Falkowski, 1997b; Longhurst et al., 1995;
Kuring et al., 1990; Prasad & Haedrich, 1994). The synoptic
views of the marine biosphere captured by satellite-based ocean
color instruments provide valuable data at spatial and temporal
scales unattainable with shipboard or moored instrumentation.
This was aptly demonstrated by the proof-of-concept Coastal
Zone Color Scanner (CZCS) (Gordon et al., 1983; Hovis et al.,
1980). Drawing on its successful legacy, a number of advanced
ocean color satellite instruments were launched in the past
decade [e.g., the Ocean Color and Temperature Scanner–OCTS
(Iwasaki et al., 1992), the Sea-viewing Wide Field-of-view
Sensor–SeaWiFS (Hooker et al., 1992), the Moderate Resolu-
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tion Imaging Spectroradiometer–MODIS (Salomonson et al.,
1989), and the Medium Resolution Imaging Spectrometer–
MERIS (Rast & Bezy, 1999)]. More are scheduled for launch in
the near future [e.g., the Visible Infrared Imager/Radiometer
Suite–VIIRS (Welsch et al., 2001)–on board the National Polar-
orbiting Operational Environmental Satellite System].

Space-borne ocean color instruments measure the spectrum
of sunlight reflected from ocean waters at selected visible and
near-infrared wavebands. These radiance spectra are used to
estimate geophysical parameters, such as the surface concen-
tration of the phytoplankton pigment chlorophyll a, Ca, via the
application of bio-optical algorithms (O'Reilly et al., 1998).
These derived data products are subsequently input into
secondary (i.e., higher order) geophysical algorithms, as is the
case for marine primary production, PP (e.g., Behrenfeld and
Falkowski, 1997a). The uncertainties in global estimates of Ca

and PP are contingent on the uncertainties of their model input
parameters (e.g., spectral reflectance and Ca). Predictably,
uncertainty increases for secondary algorithms that require
derived products as input (Behrenfeld & Falkowski, 1997b).
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Global accuracy goals for spectral reflectance and Ca for
modern sensors are commonly defined as 5% and 35%,
respectively, in clear, natural waters (Hooker et al., 1992). As
such, statistical validation of these products is prerequisite in
verifying that such goals are being met. Following McClain et
al. (2002), we define validation as “the process of determining
the spatial and temporal error fields of a given biological or
geophysical data product”. The NASA Ocean Biology Proces-
sing Group (OBPG) at the Goddard Space Flight Center
executes satellite validation activities via the direct comparison
of remotely sensed measurements with coincident in situ
measurements. The OBPG maintains responsibility for the
operational processing of ocean color data within NASA, as
well as the post-launch calibration, validation, and subsequent
distribution of the data products. A significant component of
this responsibility is quantifying how well the satellite-retrieved
products reflect true conditions. As will be highlighted in a
subsequent section, a comprehensive in situ data set with
measurements covering a wide range of oceanographic
conditions is essential in this process (Werdell & Bailey, 2005).

Much recent refereed research on ocean color validation
efforts focuses on comparisons of satellite-derived Ca retrievals
with regional in situ data sets, many of which are based on
specific, or single, field campaigns (e.g. Barbini et al., 2005;
D'Ortenzio et al., 2002; Gohin et al., 2002; He et al., 2000;
Smyth et al., 2002). While a necessary step towards a
comprehensive understanding of the uncertainties in global
primary production models, validation of satellite-retrieved Ca

alone is insufficient, as uncertainties in the retrievals are
strongly affected by the uncertainties in the Ca algorithm
applied. Moreover, as many Ca algorithms make use of
reflectance ratios (O'Reilly et al., 1998), underlying problems
with radiometry are often masked. Since the primary measure-
ment of satellite-based sensors is spectral radiance, the focus of
the OBPG validation activity is on the retrieved water-leaving
radiance (Lwn(λ)) estimates. Several other independent studies
include validation of spectral reflectance (e.g., Froidefond et al.,
2002; Gordon et al., 1983; Pinkerton & Aiken, 1999); however,
these also suffer from the limitations imposed by short-term,
regional or cruise-specific data sets.

In developing their calibration and validation program, the
OBPG adopted the approach of globally validating satellite
ocean color sensors throughout the life of their missions,
particularly for data products to be used in long-term multi-
sensor time series (Barnes et al., 2003; Donlon et al., 2002).
Without continuous validation for monitoring the long-term
stability of satellite instruments, such efforts are hindered as
uncertainties in sensor calibration are not tracked, and potential
instrument effects may, therefore, be misinterpreted as geo-
physical phenomena. This is particularly true for remotely
sensed ocean color as the Lwn(λ) component accounts for only
about 10% of the total reflectance signal received by the sensor
at the top of the atmosphere in the visible wavelengths (Gordon,
1998).

Ultimately, experience has demonstrated that a number of
benefits are realized with a rigorous validation activity,
including: (i) the assignment of a measure of accuracy to
satellite-derived products, which lends confidence to their
scientific utility in higher-order derived products (Behrenfeld &
Falkowski, 1997b); (ii) the verification of on-orbit satellite
calibration (Barnes et al., 2001); (iii) the evaluation of the long-
term stability of satellite measurements (Franz et al., 2005); and
(iv) the identification of conditions, either oceanic, atmospheric
or satellite specific, for which satellite-derived products are
invalid. In this paper, we outline and define the NASA OBPG
satellite validation approach. The method described may be
applied to most sensors with few modifications, and in fact, the
OBPG incorporates these methods in their current OCTS,
SeaWiFS, and MODIS validation activities. Results for
SeaWiFS are presented.

2. Methods

2.1. In situ data

The OBPG maintains a local repository of in situ bio-optical
data, the SeaWiFS Bio-optical Archive and Storage System
(SeaBASS) (Hooker et al., 1994; Werdell et al., 2003), with the
purpose of acquiring a data set of sufficient size, quality, and
diversity to support and sustain its regular scientific analyses.
SeaBASS is populated with both voluntary and funded data
contributions from investigators worldwide (Fargion et al.,
2004). To develop consistency across multiple contributors and
institutions, the NASA Sensor Inter-comparison and Merger for
Biological and Interdisciplinary Oceanic Studies (SIMBIOS)
Project (McClain et al., 2002) defined and documented a series
of in situ sampling strategies and data requirements that ensure
that the holdings of SeaBASS are appropriate for both algorithm
development and ocean color sensor validation (Mueller et al.,
2003a,b). To further ensure consistency, the radiometric and
pigment data within SeaBASS were recently re-evaluated to
produce remote-sensing relevant surface values using a
common set of processing and quality control steps (Werdell
& Bailey, 2005). These latter data are incorporated into the
OBPG satellite validation activity.

While in situ measurements are sometimes referred to as
‘ground-truth’ measurements, they are rarely ‘absolute truth’.
Full characterization of the inherent measurement error of the
field instrument is essential for any validation effort. Ideally, the
instruments are also well calibrated and deployed in a manner
consistent with well-defined protocols (Mueller et al., 2003a,b).
To reduce systematic uncertainties resulting from data proces-
sing, the data should be consistently processed using a single-
source processor (Hooker et al., 2001; Werdell & Bailey, 2005).
Even using single-source processing, however, there will be
uncertainties with in situ radiometric measurements resulting
from the difficult nature of calibrating these instruments as well
as deployment related issues. Hooker and Maritorena (2000)
demonstrated that under ideal conditions, in situ radiometric
measurement uncertainties are on the order of 3%–5%.
Prerequisite ancillary information includes the date and time
of collection, and the latitude and longitude of collection.
Experience has suggested that useful additional information
includes: wind speed and direction, wave-height, cloud
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conditions, atmospheric pressure, ozone concentration, and
aerosol optical thickness (Hooker et al., 1994).

2.1.1. Optically “shallow” water
Occasionally, the apparent optical depth (AOD) of the water,

i.e., the depth at which penetrating light is of optical
significance, exceeds the physical depth of the measurement
location. When this occurs, reflectance off the bottom may
affect the observed Lwn(λ) (Lee et al., 1999; Spitzer & Dirks,
1987). To eliminate these cases from the validation data set, a
flag is set for records where the physical depth of the
measurements locations are shallower than the local AOD
calculated via:

AOD ¼ 1:3=K490 ð1Þ
where K490 is the downwelling diffuse attenuation coefficient at
490nm.

Gordon and McCluney (1975) demonstrated that, for a
homogeneous water column, 90% of the water-leaving radiance
signal originates from the first optical depth, or the depth at
which the irradiance falls to 1/e of the incident irradiance value.
Assuming nominal error in the K490 estimation, a conservative
value of 1.3 is used in lieu of 1.0 to ensure that potential bottom
reflectance will not influence the results. A number of the in situ
data did not include either a measurement of K490 (e.g. above-
water radiometric observations), or a recorded water depth. To
ensure that this flag was consistently applied to all in situ data,
the coincident satellite-derived K490 (Mueller & Trees, 1997;
O'Reilly et al., 2000) was used for K490 in Eq. (1) and the
NOAA ETOPO2 dataset (2001) for water depth.
2.1.2. Normalized water-leaving radiance
In situ normalized water-leaving radiances (Eq. (2)) are

calculated via:

Lwn ¼ Lw
Es

⁎F0 ð2Þ

where Lw, Es, and F0 are spectral water-leaving radiance,
surface irradiance, and the mean extraterrestrial irradiance,
respectively. For Es, theoretical clear sky surface irradiances
were adopted, assuming a maritime aerosol type and an ozone
concentration of 300 Dobson (e.g. Eq. (6) in Frouin et al.,
1989). Theoretical surface irradiances were chosen over
measured surface irradiances for several reasons. First, a
number of the measured irradiances exceeded the theoretical
clear sky values by more than 10% and in rare cases approached
the extraterrestrial value. Second, there were occasionally large
discrepancies between surface irradiance measurements calcu-
lated by extrapolation of the water column irradiance profile and
those measured directly via a surface sensor (Zaneveld et al.,
2001 and Fig. 1 of Werdell and Bailey, 2005). Finally, Hooker et
al. (2001) found that the uncertainties in normalized water
leaving radiance were consistently larger than the uncertainties
in subsurface radiance and suggested that validation may be
best accomplished without normalization of water leaving
radiance if the data were collected very close to the satellite
overpass. Unfortunately, due to the paucity of measurements
made near the satellite overpasses, a larger time window is often
required when defining coincidence and therefore normaliza-
tion is preferred. A simple normalization to the cosine of the
solar zenith angle was initially considered, however, normal-
ization by theoretical irradiance is able to account for
atmospheric transmittance as well as solar elevation and was
therefore ultimately selected.

The current reprocessing of SeaWiFS data (reprocessing 5.1,
July 2005) includes the bidirectional reflectance distribution
function (BRDF) described by Morel and Gentili (1991, 1993,
1996) with modifications described in Gordon (2005) in the
‘exact’ normalization of water-leaving radiance. For consisten-
cy with the satellite product, we applied this BRDF correction to
the in situ water-leaving radiance data, using the same look-up
tables and approach employed by the satellite processing code.

2.2. Satellite considerations

2.2.1. Spatial considerations
The spatial resolutions of most ocean color satellites fall in

the range of 300m to 1.1km (at nadir viewing). Given the
satellite scale, the ground truth data are ideally collected in
regions where the spatial variability of the geophysical
parameter under consideration is relatively stable for an area
several times the spatial resolution of the satellite-based
instrument (Gordon et al., 1983). This accounts for possible
navigation errors in the satellite data and minimizes the effect of
small-scale spatial variability on the measured in situ data. Sub-
pixel geophysical variability is effectively averaged by space-
borne remote sensors, while in situ instrumentation does not
adequately characterize this variability.

We avoid the use of SeaWiFS GAC [Global Area Coverage]
resolution data, or any reduced resolution product, in the
validation process. Whenever possible, we choose satellite data
collected at the native resolution of the sensor. Any sub-
sampling of the satellite data prior to the validation analysis
adds an unquantifiable uncertainty to the results. For example,
the SeaWiFS stray light correction is applied to pixels near a
bright target. With the GAC resolution data set, however, the
data are sub-sampled on board the spacecraft, potentially
including unidentified bright targets, and thus stray light cannot
be adequately corrected in the downstream processing (Barnes
et al., 1995). To avoid this and other potential errors, the results
presented here exclude GAC resolution data.

Satellite navigation may not be accurate to a pixel (Patt,
2002), therefore, a box of some number of pixels (e.g. 3×3,
5×5, or 7×7) is defined, centered on the location of the in situ
measurement. This box allows for the generation of simple
statistics, such as the mean and standard deviation, to assist in
the evaluation of spatial stability, or homogeneity, at the
validation point. Further, the use of a multi-pixel box increases
the possibility of an in situ measurement being available for
validation by increasing the chance that the satellite retrieval
will have sufficient clear pixels to be useful. Following, the
closest pixel to the in situ location need not be clear, so long as
the valid pixels in the box meet the homogeneity requirement.
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Hu et al. (2001) suggest that, due to pixelization, satellite
ocean color data require aggregation (i.e. averaging) in order to
meet the stated accuracy goals for the products. We compute the
necessary minimum sample size for statistical reliability using:

N ¼
s2⁎t2að2Þ;ðn−1Þ

d2
ð3Þ

where N is the number of pixels required, s2 is the sample
variance, tα(2),(n−1) is the two-tailed critical value of Student's t
test, and d is one half of the accuracy requirement (Zar, 1996).
The mean, clear-water (Ca less than 0.1mg m− 3, water depth
greater than 1000m) values for Lwn(λ) derived from SeaWiFS
are approximately 1.97μW cm−2 nm− 1 sr− 1 and 0.28μW cm−2

nm− 1 sr− 1 for 443nm and 555nm, respectively. These values
agree well with theoretical values (Gordon et al., 1988; Morel &
Maritorena, 2001). Given the radiometric accuracy goal of ±5%
in Lwn(λ) (Hooker et al., 1992), we assign values of d to be
within 0.1μW cm−2 nm− 1 sr− 1 and 0.015μW cm−2 nm− 1 sr− 1

for 443 and 555nm, respectively. Using an open ocean region
(Hawaiian Ocean Time Series ALOHA station, Karl & Lukas,
1996), an estimate of the sample variance was made by
calculating the median variance for 25SeaWiFS scenes using a
25×25pixel box where 80% of the pixels were free from cloud
contamination. The use of an open ocean location reduced the
possibility of geophysical variability affecting the variance
estimate, and thus, we assume that the derived variances are due
to the combination of inherent sensor and atmospheric
correction uncertainties. The estimated sample variances were
0.00563μW cm−2 nm− 1 sr− 1 and 0.00029μW cm−2 nm− 1 sr− 1

for 443nm and 555nm, respectively.
Eq. (3) was solved iteratively on the critical Student's t value

until N converged. An initial value for N of 25pixels was used.
The values of N for 443nm and 555nm converged at 9 and
18pixels, respectively. Considering that not all scenes are cloud
and land free, e.g. that a number of pixels will be masked as
unusable, we double these values to 18 and 36pixels.
Restricting the box to odd dimensions to maintain the location
of interest in the center of the box suggests a size of 7×7
(49pixels). A sensitivity analysis of the validation data (results
not shown) indicates that the use of a 5×5box does not
significantly degrade the results. We desire a small sampling
box as we assume that as box size increases, geophysical
variability may be introduced in violation of our requirement of
homogeneity. We ultimately selected a 5×5pixel box to limit
the inaccuracy posed by geophysical variability, errors in
navigation, and errors in the algorithms employed in the satellite
retrieval process, while maintaining a reasonably small
sampling area.

Careful consideration of measurement scale is critical when
validating remote sensors with in situ observations, particularly
that of the local geophysical phenomenon influencing those
measurements. Failure to do so will often affect the interpreta-
tion of the validation results. The phenomena to be most
cognizant of are those that fall between the scale of the in situ
instrument and the satellite sensor. The averaging of satellite
data within a box centered on the in situ location implies that the
region of interest is geophysically homogeneous. As is described
later, when the assumption of homogeneity could not be made,
we choose not to use the data for validation purposes.

2.2.2. Coincidence determination
Satellite data are navigated to identify the pixel that

corresponds with each in situ location. As the in situ data are
rarely collected exactly when the satellite views their location,
we assign a temporal threshold in our definition of coincidence.
This time window is defined to be short enough to reduce the
effects of temporal variability in the in situ data, yet sufficiently
large to allow for the greatest possibility of a match. For the
homogeneous water masses under consideration, we assigned a
±3-h window around the satellite overpass. We assumed that
illumination is sufficient and atmospheric conditions are
reasonably stable over this period (Bailey et al., 2000).

We require that each satellite record is entirely unique,
having no pixels in common with any other validation record.
Multiple in situ measurements per satellite box (5×5) are
reduced to unique validation points by two methods. First, in
situ measurements made at a single station are reduced to a
single representative sample prior to inclusion in the validation
data set (Werdell & Bailey, 2005). And second, along-track in
situ measurements (i.e. multiple casts from a survey) are
excluded if they fall within the bounds of the box defined for the
previous validation point. The in situ data record with the
smallest time difference from the satellite data record is used as
the starting reference point for the along-track exclusion. It is
possible, especially at high latitudes, to acquire satellite data
from multiple orbits for a given in situ record. When these cases
occur, the satellite orbit closest in time to the in situ
measurement is selected.

2.2.3. Satellite data processing
Level 1A (instrument digital counts, L1A) satellite data are

extracted to 101×101pixel subsets centered on the location of
the coincident in situ data. These subset L1A files are processed
to Level 2 (geolocated, geophysical values, L2) using the Multi-
Sensor level 1 to 2 (MSL12) processing code, version 5.2
distributed with the SeaWiFS Data Analysis System (SeaDAS)
version 4.8 (Baith et al., 2001; McClain et al., 2004). Version
5.2 of MSL12 implements the atmospheric correction algorithm
described in Gordon and Wang (1994) with additional
corrections for BRDF (Morel & Gentili, 1991, 1993, 1996),
out-of-band radiance (Wang et al., 2001; Patt et al., 2003), and
near-infrared (NIR) water-leaving radiance (Patt et al., 2003).
The output L2 files include: Lwn(λ), the SeaWiFS default Ca

product (OC4v4, O'Reilly et al., 2000), aerosol optical
thickness at 865nm, and K490, as well as ancillary information
such as solar and sensor zenith angles, retrieved aerosol type,
and L2 processing flags.

2.2.4. Satellite data set screening
We exclude data where the viewing and solar zenith angles

exceed 60° and 75°, respectively. These thresholds correspond
to the those used operationally in the Level 3 binning process
for the production of the SeaWiFS global products. This
exclusion accounts for limitations on the reliability of
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atmospheric correction algorithms at extreme viewing and solar
geometries. The SeaWiFS atmospheric correction algorithm is
based on plane-parallel geometry (Gordon & Wang, 1994),
which ignores earth curvature. Ding and Gordon (1994)
demonstrated that the plane-parallel assumption is sufficiently
accurate for solar zenith angles less than about 70° and view
angles up to 45°. For SeaWiFS, which tilts 20° fore or aft during
normal operation, a view angle of 45° corresponds to a sensor
zenith angle of approximately 56°.

The remainder of the exclusion criteria (Fig. 1) applied are
based on the L2 processing flags set by the atmospheric
correction algorithm (Franz, 2005). The flags are used to
identify and exclude questionable pixels from the 5×5box.
Pixels are masked if any of the following flags are set: land,
cloud or ice, stray light, sun glint, high top-of-atmosphere
(TOA) radiance (i.e. at, or near, saturation), low Lwn(555) (a flag
used to identify cloud-shadowed pixels), or atmospheric
correction failure. Experience has demonstrated that excluding
pixels with these flags provides the best quality data for
comparison with field data. Other flags, specific to the product
under validation, are also considered for exclusion criteria. For
example, SeaWiFS L2 processing provides a Ca warning flag
that is set for either extreme reflectance ratio retrievals (O'Reilly
et al., 1998) or for values falling outside a pre-defined range,
indicating lower confidence in the Ca retrieval. We exclude such
flagged pixels specifically from the Ca validation data set. It
should be further noted that the flagging criteria are sensor
Fig. 1. Flowchart of the validation process hi
specific, as well as a function of the atmospheric correction
algorithm employed.

We require that a minimum of 50% of the pixels in the
defined box be valid (i.e. unflagged) to ensure statistical
confidence in the mean values retrieved. For in situ data
collected in coastal waters, the valid pixel criterion is relaxed to
a minimum of 50% of the non-land pixels, with an absolute
minimum of 5pixels. The arithmetic mean of the non-masked
pixels in the 5×5box, centered on the in situ location, is
determined and the standard deviation calculated. To minimize
the effect of outliers on the calculated mean value, especially for
the case of coastal locations where the required minimum pixel
count is reduced, a filtered mean value is also calculated:

Filtered mean ¼
P

ið1:5⁎r−X̄ Þ < Xi < ð1:5⁎rþ X̄ Þ
N

ð4Þ

where X̄ is the unfiltered mean value, σ is the standard deviation
of the unfiltered data and N is the number of values within
±1.5⁎σ.

A revised pixel count (total minus masked pixels minus
filtered pixels) is computed. The mean, median, standard
deviation, filtered mean, filtered standard deviation, minimum
value, maximum value, valid pixel count and filtered pixel
count are stored for each satellite record.

A coefficient of variation (filtered standard deviation divided
by the filtered mean, CV) is computed for the Lwn(λ) retrievals
ghlighting the applied exclusion criteria.



Table 1
Validation statistics for SeaWiFS – global

Product Ratio (SIQR) a % Difference b Slope r2 RMSE N

Lwn(412) 0.905 (±0.267) 24.09 1.146 0.827 0.332 480
Lwn(443) 0.915 (±0.169) 17.48 1.048 0.830 0.262 629
Lwn(490) 0.918 (±0.133) 15.10 0.979 0.821 0.207 587
Lwn(510) 0.918 (±0.124) 13.74 0.936 0.849 0.177 406
Lwn(555) 0.915 (±0.145) 16.88 0.896 0.931 0.146 629
Ca 0.998 (±0.352) 33.09 0.951 0.796 0.638 1293

As the Ca data span several orders of magnitude, a log transformation was made
prior to calculation of slope and r2 and bias statistics for this product.
a Median satellite to in situ ratio.
b Median % difference.
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for bands between 412 and 555nm and for the aerosol optical
thickness at 865nm. The median CV is recorded. Finally,
satellite retrievals with extreme variation between pixels in the
defined box (CV greater than 0.15) are excluded. These
typically represent frontal regions or other anomalies (e.g.,
cloud edges) which make the validation results questionable
(Kilpatrick et al., 2001).

3. Validation results: SeaWiFS

We acquired 4124 and 11059 in situ radiometric and
pigment observations, respectively, with spatial and temporal
coincidence with SeaWiFS data. These resulted in a maximum
of 629 radiance and 1293 Ca validation records after all
exclusion criteria were applied (Fig. 2). The spectral radiance
sample sizes vary with wavelength because of differences in
field instrumentation. Approximately 58% of the potential
validation points were eliminated due to lack of sufficient valid
satellite retrievals in the 5×5box (i.e. below the minimum pixel
threshold; 50% yielded zero retrievals), primarily due to cloud
cover. Another 20% were eliminated as they exceeded the
predefined allowable time window. An additional 2.5% were
eliminated due to each of the apparent optical depth, coefficient
of variation, geometry and the along-track distance constraints.
This amounts to a return of approximately 15%.

For each individual validation point, the satellite to in situ
ratio and absolute percent difference are calculated. These are
summed, and the median satellite to in situ ratio, the semi-
interquartile range (SIQR) for this ratio and the median absolute
percent difference (MPD) are computed for each product
validated (Table 1).
0˚ 40˚ 80˚ 120˚ 160˚
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Fig. 2. Map of SeaWiFS validation data. Circles indicate a successful validation record
all exclusion criteria.
The SIQR provides an indication of the spread of the data
and is calculated via:

SIQR ¼ Q3 � Q1

2
ð5Þ

where Q1 is the 25th percentile and Q1 is the 75th percentile (Q2

would be the median value). While the median ratio provides an
indication of overall bias and the SIQR gives a measure of
uncertainty, an alternative, unbiased statistic is required to
provide additional information on how accurately the satellite
retrieval agrees with in situ measurements. For this, the median
absolute percent difference (MPD) is employed. MPD is
calculated as the median of the individual absolute percent
differences, where the absolute percent difference (PD) is
calculated as:

PDi ¼ 100⁎
jXi−Yij

Yi
ð6Þ

where X is the satellite retrieved value and Y is the in situ value.
200˚ 240˚ 280˚ 320˚ 0˚

. Crosses indicate where coincident in situ data exist, but the record failed to pass



Table 2
Validation statistics for SeaWiFS – deep water

Product Ratio (SIQR) % Difference Slope r2 RMSE N

Lwn(412) 1.030 (±0.110) 10.78 1.074 0.904 0.2294 154
Lwn(443) 0.962 (±0.136) 13.34 1.066 0.854 0.2375 242
Lwn(490) 0.956 (±0.117) 12.13 0.979 0.744 0.1689 242
Lwn(510) 0.975 (±0.098) 11.08 1.240 0.478 0.1120 127
Lwn(555) 0.976 (±0.169) 16.64 0.792 0.675 0.0650 242
Ca 0.9221 (±0.239) 25.96 0.905 0.833 0.406 271

See footnotes of Table 1.
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Scatter plots of satellite versus in situ values for each product
were produced (Fig. 3), for which the slope, coefficient of
determination (r2), and root mean square error of the regression
(RMSE) are listed in Table 1. The satellite-derived values were
regressed against the in situ data using a reduced major axis
(RMA) approach, as error may be associated with both the in
situ and satellite data (Sokal & Rohlf, 1995).

The comparisons of Lwn(λ) and Ca generally show
reasonable agreement between SeaWiFS and in situ values.
The median satellite to in situ ratios for all products are within
10% of unity, with that for Ca approaching unity. The
uncertainty about the median ratio (as indicated by the SIQR)
for most bands is on the order of 0.15. The Lwn(412) ratio has
notably larger SIQR at 0.267. In general, the Lwn(λ)
comparisons exhibit a clear bias toward under-estimation, as
evident by all wavelengths having a median ratio of less than
unity. The MPD for the Lwn(λ) ranges between a low of 13.74%
for the 510nm band and a high of 24.09% for the 412nm band.
The Ca comparison has a MPD of 33.09%.

The median ratio, SIQR, and MPD are bulk statistics that do
not provide information on how well the retrievals compare
over their dynamic range. For this we examine the regression
statistics (i.e. slope, r2, and RMSE) and distribution histograms.
The slopes of the regression plots are all close to unity, with the
412nm band having a slope that deviates most significantly
from unity, at 1.146. There is a trend for the slope to rotate to
below unity with increasing wavelength. The r2 for the
regressions are all quite high, at or above about 0.8. The high
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Fig. 3. Scatter plots of SeaWiFS to in situ meas
r2 and slopes near unity suggest that the comparisons agree over
the measured dynamic range.

3.1. Deep water

Given the wide geographic coverage, the OBPG generates
subsets of the data to study specific regional, physical, and
trophic scenarios. One important case is for deep water
(≥1000m), which is representative of the majority of the
global ocean. The majority of the available validation data are in
complex coastal regimes, and as a result, the interpretation of
the global validation results may be negatively impacted by this
coastal dominance. The accuracy goals defined in Hooker et al.
(1992) and (Gordon &Wang, 1994) were for clear, Morel Case-
1 water (Morel & Prieur, 1977), which is approximated by our
deep-water subset. The results for this deep-water subset are
presented in Table 2 and Fig. 4.
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By comparison, the results of the deepwater subset show a
general tendency toward better agreement with in situ over the
global data set. The MPD and RMSE for all Lwn(λ) and Ca are
lower for the deepwater set, while the median ratios tend toward
unity. In general, the slopes and r2 for regressions in the
deepwater subset are improved, though the severely reduced
dynamic range for the 510 and 555nm bands makes
interpretation of the slope and r2 less meaningful. Histograms
of the percent difference for Lwn(443nm) and Ca (Figs. 5 and 6)
show that the deepwater subset has a slightly narrower
distribution, and in the case of Lwn(443nm), is more centralized
about zero percent difference.

3.2. Atmospheric correction issues

A spectral bias exists in the improvement of the satellite
validation results with the deepwater subset, such that the shorter
wavelengths show amore dramatic improvement over the longer
wavelengths. This suggests one of two likely atmospheric
correction problems. The first is a failure of the black pixel
assumption for the NIR and subsequent failure of the iterative
NIRwater-leaving radiance correction scheme (Patt et al., 2003).
Such failures result in incorrect aerosol model selections,
generally tending toward the identification of the tropospheric
models, which have much stronger spectral dependencies than
either the maritime or coastal model sets. If the true aerosol type
is a maritime or coastal type, the selection of a tropospheric
model will result in a spectrally biased over-subtraction of
aerosol radiance, increasing with decreasing wavelength.
The second probable cause is the presence of absorbing
aerosols in the coastal regions. The aerosol models used in the
atmospheric correction are all non- or weakly absorbing
(Gordon & Wang, 1994). Absorbing aerosols have a lower
aerosol radiance at the shorter wavelengths than any of the
models used in the current atmospheric correction process. The
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presence of absorbing aerosols would, thus, have a similar effect
to the aforementioned incorrect model selection, though likely
to a more significant degree in the blue portion of the spectrum.
Fig. 7 shows example in situ and SeaWiFS spectra for a case of
an apparent absorbing aerosol from the Santa Barbara Channel
(collected January 17, 2001). The spectra have been normalized
to the radiance at 490nm to highlight the relative effects of
absorbing aerosols on the satellite retrievals.

Both highly scattering waters, which result in the black pixel
assumption failure, and absorbing aerosols tend to be
concentrated near the coast and, as such, are generally
eliminated from the validation set with the deepwater exclusion.
The impact of this can be most dramatically seen in the
significant improvement of the MPD for the 412nm band. Dust
events also result in absorbing aerosols that can impact the
deepwater satellite retrievals, however these tend to be more
episodic than urban aerosols in the coastal zone (Prospero,
1999).
0.0

0.3

0.6

0.9

R
el

at
iv

e 
L

w
n 

400 440 480 520 560 600 640 680

Wavelength (nm)

Fig. 7. Spectra for an absorbing aerosol case: (○) SeaWiFS data; (•) coincident
in situ data. The spectra have been normalized to the value at 490nm to highlight
the spectral effects of absorbing aerosols on the satellite retrievals.
4. Discussion

Given the rate of return of approximately 15%, the task of
validating ocean color sensors requires a dedicated in situ data
collection effort to ensure that sufficient data are available to
assess the satellite sensor performance on regional, global, and
mission-long scales. The SeaWiFS Project Office (the precursor
of the OBPG) understood this requirement early in mission
planning (Hooker & McClain, 2000; Hooker et al., 1992), and
initiated the development of SeaBASS to address this need. As a
direct result of this foresight, the data set presented here covers a
wide geographic diversity (Fig. 2) and spans the three trophic
regimes–oligotrophic (Ca≤ 0.1mg m− 3), mesotrophic
(0.1<Ca≤1.0mg m−3) and eutrophic (Ca>1.0mg m−3)–as
defined by Antoine et al. (1996) (Fig. 8). Despite the fact that
nearly 40% of the radiometric measurements are in the
deepwater subset, less than 5% are from oligotrophic waters.
As for chlorophyll, only slightly more than 5% of the
measurements are from oligotrophic waters. The vast majority
of the data, both radiometric and chlorophyll, are within the
mesotrophic and eutrophic ranges.

The global SeaWiFS comparisons indicate that the remote
sensor typically retrieves water-leaving radiance within 14–
24% of the coincident in situ measurements. This is 3–5 times
the stated goal of a 5% absolute water-leaving radiance
accuracy (Hooker et al., 1992). However, as reported in Hooker
and Maritorena (2000), most, if not all, of this target uncertainty
can be absorbed by the uncertainty in the in situ measurements.
In an effort to minimize the uncertainties with the processing of
the in situ radiometric profile data, tools were developed for
consistently processing data archived within SeaBASS (Werdell
& Bailey, 2005). In the best case scenario, however, these
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data from the oligotrophic, mesotrophic and eutrophic regions.
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uncertainties remain on the order of 3–5% (Hooker &
Maritorena, 2000). If we assign a nominal (and likely
conservative) 5% uncertainty to the in situ measurement, the
global SeaWiFS accuracy may be considered to lie within 9–
19%. Further reducing the analysis to the deepwater subset puts
the SeaWiFS radiance accuracy within 6–12% for the majority
of the global ocean. Note that the Level 3 products (4km and
9km) used in most climate research are dominated by the
deepwater pixels.

A serious limitation of the current atmospheric correction
algorithm is its inability to correct for absorbing aerosols. This
limitation will affect the water-leaving radiance retrievals for
the shorter wavelengths (e.g. 412nm) more than those for
longer wavelengths. The effect will be limited to moderate-to-
low concentrations of absorbing aerosols as higher concentra-
tions are often flagged as clouds by the MSL12 processing
code. Until such time as absorbing aerosol detection and
correction is successfully implemented in the atmospheric
correction algorithm (e.g. Nobileau and Antoine, 2005), satellite
ocean color measurements over areas with absorbing aerosols
will be severely, and negatively, affected.

For both the global data set and the deepwater subset, the
median satellite to in situ ratio shows a negative bias for all
bands, except the deepwater Lwn(412), which has a slight
positive bias. The negative bias is consistent at approximately
9% for the global Lwn. For the deepwater subset, the bias is less,
at about 2.5%–4%. This suggests a potential error in the
estimation of the magnitude of the aerosol radiance by the
atmospheric correction algorithm.

Ocean color data products are by their very nature derived
products. For all instruments, the sensor measures top of
atmosphere (TOA) radiance, and an atmospheric correction
algorithm is applied to retrieve estimates of spectral water-
leaving radiance. Water-leaving radiances are the principle
quantities used in subsequent algorithms to produce additional
derived products (e.g. the surface concentration of chlorophyll
a). Atmospheric correction algorithms, sophisticated as they
are, cannot account for all environmental conditions that may
be encountered. As is evident by the improvement in the
validation results for the deepwater subset, there are conditions,
such as absorbing aerosols and highly scattering waters, that are
not adequately addressed by the current atmospheric correction
algorithms. Therefore, sensor characteristics and algorithm
limitations need to be understood and environmental conditions
need to be known, so that validation results can be interpreted
correctly. An understanding of the accuracy of all the
algorithms involved in the derivation of a particular satellite-
derived product is essential in the validation process (Wang et
al., 2005). When drawing conclusions about validation results
for secondary derived products, it must be stressed that the
satellite product accuracy will never exceed the accuracy of the
algorithm from which it is derived. In the case of the SeaWiFS
Ca algorithm (OC4v4, O'Reilly et al., 2000), the stated
algorithm RMSE is 0.222in log units. For a Ca of 1mg m−2,
this is equivalent to an RMSE of 0.599 in normal space. The
RMSE for the global SeaWiFS Ca validation set is 0.6382, very
similar to the RMSE for the algorithm itself.
Validation of remotely sensed ocean color data products is a
complicated task, one requiring a large in situ data set that both
temporally spans the lifetime of the satellite mission and is
geographically global in scope. In this paper, we have outlined
an approach to validation that is operationally applied by the
OBPG to most ocean color sensors. There are a few key
recommendations we make from our experience applying the
described method to SeaWiFS data:

(1) Use a consistently processed in situ data set
(2) Eliminate suspect in situ data (e.g. from optically shallow

waters) from the validation set
(3) Use a narrow time window for determining coincidence

(i.e. no more than ±3h) between in situ and satellite data
records

(4) Use native resolution satellite products (i.e. avoid sub-
sampled data)

(5) Use the mean of a 5×5pixel box centered on the in situ
location

(6) Appropriately mask satellite pixels on the L2 flags
(7) Use a homogeneity test (e.g. CV) to minimize the impact

of geophysical variability in the 5×5pixel box on the
satellite measurement mean

Following these recommendations will aid in the analysis of
the resulting validation results by minimizing the systemic
uncertainties.
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